ZEBRA RFID

SDK for Windows

Developer Guide

ZEBRA and the stylized Zebra head are trademarks of Zebra Technologies Corporation, registered in
many jurisdictions worldwide. All other trademarks are the property of their respective owners. ©2019
Zebra Technologies Corporation and/or its affiliates. All rights reserved.

Information in this document is subject to change without notice. The software described in this document
is furnished under a license agreement or nondisclosure agreement. The software may be used or copied
only in accordance with the terms of those agreements.

For further information regarding legal and proprietary statements, please go to:

SOFTWARE: www.zebra.com/linkoslegal

COPYRIGHTS: www.zebra.com/copyright

WARRANTY: www.zebra.com/warranty

END USER LICENSE AGREEMENT: www.zebra.com/eula

Terms of Use

Proprietary Statement

This manual contains proprietary information of Zebra Technologies Corporation and its subsidiaries
(“Zebra Technologies”). It is intended solely for the information and use of parties operating and
maintaining the equipment described herein. Such proprietary information may not be used, reproduced,
or disclosed to any other parties for any other purpose without the express, written permission of Zebra
Technologies.

Product Improvements

Continuous improvement of products is a policy of Zebra Technologies. All specifications and designs are
subject to change without notice.

Liability Disclaimer

Zebra Technologies takes steps to ensure that its published Engineering specifications and manuals are
correct; however, errors do occur. Zebra Technologies reserves the right to correct any such errors and
disclaims liability resulting therefrom.

Limitation of Liability

In no event shall Zebra Technologies or anyone else involved in the creation, production, or delivery of the
accompanying product (including hardware and software) be liable for any damages whatsoever
(including, without limitation, consequential damages including loss of business profits, business
interruption, or loss of business information) arising out of the use of, the results of use of, or inability to
use such product, even if Zebra Technologies has been advised of the possibility of such damages. Some
jurisdictions do not allow the exclusion or limitation of incidental or consequential damages, so the above
limitation or exclusion may not apply to you.

Revision History

Changes to the original guide are listed below:

Description

MN-003515-01 Rev. A | 03-2019 Initial Release

www.zebra.com/linkoslegal
www.zebra.com/copyright
www.zebra.com/warranty
www.zebra.com/eula

Contents

TEIMS OFf USE .ot e et e e e e et e e e e e e e aaaaeeeaeeeeeaaans 2
Proprietary Statement ... ————— 2
Product IMprovemMeENtSoooiiiiiiiiie e 2
Liability DISCIAIMET ... 2
Limitation of Liabilityoooermmmiie e 2

REVISION HISTOMY ...ttt 2

N o o 10 A I 0 T L= € LT o = 7

1] (o o [T 1o o IR PPPPRRR 7

Supported RFID REATEISooveeiiiiiiee ettt ettt e e e e e 7

Chapter DESCIIPIONS ... e e e e e e e e eeaaaaaaeaaeesaaaaans 7

Notational CONVENLIONSooiiiiiiiiiiee e e e e e e e e e e e e eeeees 7

Service INfOrmationooooiiiii e ——————— 8

Provide Documentation Feedback 8

Zebra RFID SDK for WINdOWS OVEIVIEWccoiiiiiiiiiiiiiicissnnnnnes 9

T (e T [U T3 1] o PP 9

Connecting to an RFID REAAENuuiiiiiiiiiiiiiie et 9
Special Connection Handling Casescooouiiiiiiiiiiiiiieeee e 11

Region Is Not Configuredooooiiiieieicce e 11
D EToTo] o1 o V=T ox SRR 11
Reader Capabiliti€soooeeeiiiiiiiii e 12
General Capabilitiesoooeiiiiii e 12
GeN2 Capabiliti€scceeeeieeeeeecee e 12
Regulatory Capabiliti€scoooiiiiiiiiiecc e 12
Retrieving Reader Capabilitiescooiiiiiiiiiiiieeeee e 12
Configuring the Reader ... 13
Antenna Specific Configuration ..o 13
SINGUIAtION CONIOLcoiii e 13
Tag Report Configuration ... 14
Dynamic Power Management Configurationcccooviiiiiiicciiiie e, 14

Regulatory Configuration ... 14

Saving ConfiQurationoooiiiiiiii e 15

Reset Configuration to Factory Defaultscccceiiiiiiic e 15
Managing EVENLS ... 15
Registering for Tag Data Notification ..o, 16

Device Status Related EVENtSooooiiiiiiiiiiiee e 16

BasiC Operationsooooiiiiiice e 17
Tag Storage Settings ..ooovvvvieeee e ——— 17

Simple ACCeSS OPEratioNSuueuiiiiiieiee e e e e e eeeeeees 18

Tag LOCAtIONING ..ttt 19
Advance OPEratioNScoooviiiiiiiiiiiei e e —————— 19
(8] o N I e o =T = PP UPPPPPPPPPPR 19

USING BEEPET ... e ettt a e e 20

2= (o3 1Y/ (0T [20

USING Pre-Filterseeiiieeeeee e 21
ot =Y o] (o] 1 SR PEUPPRPPPPIN 22
Creating, Building, and RUunning Projectsccccomimmiimmmmmnicsiiiiciiss s ss s s s ssssssssssssssssssssssssssssnnnns 23
] (o Yo [1 o 1o o IR 23
Creating @ WindOwWSs ProjeCtoovvueiiiiiiiiie et 23
Building and Running a Windows Project ... 24
Creating a Windows Mobile Project ... 25
Building and Running a Windows Mobile Projectcooeiiiiiiiieie e 26
Pairing with BIUEIOOth ... 27
Pairing with @ Personal Computer ... 27
Pairing with @ MC55 mobile deViCecoooiiiiiiiiicccccee e 28

(9 2= 4 Lo 307N 0 o 1 1o 1 o o = 29
Windows 7 RFID SDK Demo AppPlIicationuuuuuiiiiiieiieee e 29
Windows Mobile RFID SDK Demo Applicationcccooovioiiiiiiiiiiiieee e 30

List of Figures

ADOUL ThiS GUIAEccoeeiiiiiiiiicicccecssssemmn e s e s s s e e s e s s e s e e s s s s ss s s s s s s s s s s smmmnnmnnn s s n s s e e e eeseesesssnssnanassssssnnnnnnnnn 7
Zebra RFID SDK for WINAOWS OVEIVIEWcccoiiiiiiiiiiiiiiissnnssnsnes 9
Creating, Building, and Running Projects ... 23
NEW ProjeCt WINUOWeeiiiii et e e et e et e e s s e e e e e e e e e e eeeeeennnnes 23
T aT o] S VAYA T o (o 1SRRI 24
Smart Device ProjeCt WINAOWcoeiiiiiiiiiiieieeee e e e e e 26
Assembly Configuration for RFID SDK Demo Projectooovviiiiiiiiiiiiiiiieeeeiieeeeeeeeens 26
Pairing Bluetooth Device on WINAOWScccuuiiiiiiiiiiiiieieeeee e 28
[11 40 To T o o [o= 1o o 1= 29
WINdows 7 RFID SDK DEMO APP .uuuuiiiiiiiiiiiiiieieieeeeeeeeeeeeeasasaassasesessseeeeeeeeeeeaaaaaaaeeens 29
Windows Mobile RFID SDK DEMO APP ..ccooeeeiieeiiieiiiiiiee e et e e e e e 30

List of Tables

Reader Search OPLIONSoooiiiiiiiei e e e e e ees 10
SUPPOEA EVENLS ...t e e e e e e e e e ———— 15
BatCh MOES ... e e e 21

About This Guide

Introduction

The RFD8500 RFID SDK Windows Developer Guide provides installation and programming information
that allows RFID application development for Windows 7+ and MC55 (.Net Compact Framework).

Supported RFID Readers

The following RFID Readers are supported:
* RFD8500
* MC55

Chapter Descriptions

Topics covered in this guide are as follows:

e Zebra RFID SDK for Windows Overview provides detailed information about developing
applications using the Windows RFID SDK.

¢ Creating, Building, and Running Projects provides step-by-step instructions to import the RFID
SDK module and build Windows applications (with Microsoft .net 4.5/Compact framework) to work
with the RFD8500 reader.

* Demo Applications provides information about the demonstration applications available for the
Windows 7 RFID SDK and the Mobile RFID SDK.

Notational Conventions

The following conventions are used in this document:
* Bold text is used to highlight the following:
* Key names on a keypad
e Button names on a screen
* Bullets (*) indicate:
e Action items
* Lists of alternatives
» Lists of required steps that are not necessarily sequential

* Sequential lists (e.g., those that describe step-by-step procedures) appear as nhumbered lists.

7

About This Guide

Related Documents and Software

The following documents provide more information about the readers.
¢ RFID Scanner SDK for Windows API Reference Guide

* RFD8500 User Guide, p/n MNOO2065AXxx.

¢ RFD8500i User Guide, p/n MN-002761-XX.

* RFD8500 Quick Start Guide, p/n MN002225AXX.

* RFD8500i Quick Start Guide, p/n MN-002760-XX

¢ RFD8500 Regulatory Guide, p/n MNO02062AXX.

¢ RFD8500i Regulatory Guide, p/n MN-002856-xx.

¢ RFD8500/i RFID Developer Guide, p/n MN002222AXX.

For the latest version of this guide and all guides, go to: www.zebra.com/support.

Service Information

If you have a problem using the equipment, contact your facility's technical or systems support. If there is a
problem with the equipment, they will contact the Zebra Global Customer Support Center at:
www.zebra.com/support.

When contacting Zebra support, please have the following information available:

e Serial number of the unit

¢ Model number or product name

* Software type and version number.

Zebra responds to calls by e-mail, telephone or fax within the time limits set forth in support agreements.

If your problem cannot be solved by Zebra support, you may need to return your equipment for servicing
and will be given specific directions. Zebra is not responsible for any damages incurred during shipment if
the approved shipping container is not used. Shipping the units improperly can possibly void the warranty.

If you purchased your business product from a Zebra business partner, contact that business partner for
support.

Provide Documentation Feedback

If you have comments, questions, or suggestions about this guide, send an email to
EVM-Techdocs@zebra.com.

www.zebra.com/support
www.zebra.com/support
mailto:EVM-Techdocs@zebra.com
?subject=Documentation Feedback - XX

Zebra RFID SDK for

Windows Overview

Introduction

This chapter provides detailed basic through advanced information about developing applications using
the Windows RFID SDK.

The Zebra RFID SDK for Windows provides an API that can be used by external applications to manage
and control RFID specific functionality of an RFD8500 RFID reader connected over Bluetooth. The Zebra
RFID SDK for Windows also allows .Net Compact Framework Smart Device Mobile applications to be
developed for the MC55 mobile computer which communicates with the RFD8500 reader.

The Zebra RFID SDK for Windows provides the ability to manage RFID reader connections, perform
various operations with connected RFID readers, configure connected RFID readers, and retrieve other
information related to connected RFID readers.

All available APIs are defined under the Symbol.RFID.SDK namespace. The application uses the interface
IRfidReader to interact with a reader.

Use available IRfidReader interface to register for events, connect with readers, and after successful
connection, perform required operations such as inventory.

If method calls fail, the corresponding method throws an exception. The application should call all API
methods in try-catch blocks for handling exceptions.

Connecting to an RFID Reader

Connection is the first step to communicate with an RFID reader. Import the namespace to use the RFID
API as shown below.

using Symbol .RFID.SDK;
using Symbol .RFID.SDK.Domain.Reader;

Create an IRemoteReaderManagement interface instance by using the
RfidSdk.RemoteReaderManagementServicesFactory class. Create the method as follows:

IRemoteReaderManagement readerManagement =
RFidSdk.RemoteReaderManagementServicesFactory.Create();

Next call GetReaders method of the IRemoteReaderManagement interface instance object that gives a list
of all available/paired RFID readers with a Windows device/PC. Readers list is in the form of
IRfidReaderlInfo interface instance collection.

IList<IRfidReaderInfo>al IReaders =
readerManagement.GetReaders(ReaderSearchOptions.AlIReaders);

Zebra RFID SDK for Windows Overview

The Table 1 lists the reader search options that can be specified as a parameter to GetReaders method.

Table 1 Reader Search Options

Reader Search Options Description

ReaderSearchOptions.Al IReaders Gives a list of all available/paired RFID readers with a
Windows device/PC

ReaderSearchOptions.Connected Gives a list of all connected RFID readers with a Windows
device/PC

ReaderSearchOptions.NotConnected | Gives a list of all paired but not connected RFID readers with
a Windows device/PC

Next call the RfidSdk.RFIDReaderFactory.Create method with the IRfidReaderInfo instance of the device
to communicate with the device as follows.

IRfidReader reader = RFfidSdk.RFIDReaderFactory.Create(allReaders[0]);

The returned IRfidReader reader interface is used for performing all operations with RFID reader. To
connect with the reader; use IRfidReader instance Connect() method.

// Establish connection to the RFID Reader
reader.Connect();

In addition, the application can register for IRemoteReaderWatcher instance events in the following way to
get notified of RFID readers getting added (paired) / removed(unpaired), connected/disconnected.

IRemoteReaderWatcher readerWatcher = RfidSdk.RemoteReaderWatcherServicesFactory.Create();
readerWatcher.ReaderAppeared += ReaderWatcher_ReaderAppeared;
readerWatcher.ReaderDisappeared += ReaderWatcher_ReaderDisappeared;
readerWatcher.ReaderConnected += ReaderWatcher_ReaderConnected;
readerWatcher_ReaderDisconnected += ReaderWatcher_ReaderDisconnected;

}

private void ReaderWatcher_ReaderAppeared(object sender, ReaderStatusChangedEventArgs e)

{

}

private void ReaderWatcher_ReaderDisappeared(object sender, ReaderStatusChangedEventArgs e)

{
}

private void ReaderWatcher_ReaderDisconnected(object sender, ReaderStatusChangedEventArgs
e)

{

}

private void ReaderWatcher_ReaderConnected(object sender, ReaderStatusChangedEventArgs €)

{
}

10

Zebra RFID SDK for Windows Overview

Special Connection Handling Cases

In a normal scenario, the reader connects fine, but following are the cases which require special handling
at the time of connection.

The following example shows a connection handled under try-catch block.

try

{
// Establish connection to the RFID Reader
reader .Connect();

}

catch (Exception e)

{
Debug.Print(e.Message);

}

Region Is Not Configured
If the region is not configured an exception ERROR_REGION_NOT_CONFIGURED is given.

Then the caller chooses the operation regulatory region and sets the region with required configurations,
as shown below:

private void GetRegionInfo()

{
try
{
RegulatoryConfig regConfig = reader.Configurations.RegulatoryConfig;
Debug.WriteLine("Config.RegulatoryConfig.Region : " + regConfig.Region);
}
catch (Exception ex)
{
it (ex.Message == reader.Configurations.ERROR_REGION_NOT_CONFIGURED)
ConfigureDefaul tRegion();
else
Debug.WriteLine(ex.Message + Environment.NewLine);
}
}
private void ConfigureDefaultRegion()
{
Debug.WriteLine("'Region: Not Configured. Configuring as USA™);
RegulatoryConfig config = new RegulatoryConfig();
config.-Region = "USA™;
reader.Configurations.RegulatoryConfig = config;
}
Disconnect

When the application is done with the connection and operations on the RFID reader, call the following
method to close the connection.

// Disconnects reader
reader.Disconnect();

11

Zebra RFID SDK for Windows Overview

Reader Capabilities

The capabilities (or Read-Only properties) of the reader are listed below.

General Capabilities

Model Name.

Serial Number.

Manufacturer Name.
Manufacture Date.

Number of antennas supported.

Is Tag Event Reporting Supported - indicates the reader's ability to report tag visibility state changes
(New Tag, Tag Invisible, or Tag Visibility Changed).

Is Tag Locationing Supported - indicates the reader's ability to locate a tag.

Is Hopping Enabled - Not supported.

Gen2 Capabilities

Block Erase - Supported

Block Write - Supported

State Aware Singulation - Supported

Maximum Number of Operation in Access Sequence - Not supported
Maximum Pre-filters allowable per antenna - Not supported

RF Modes - Not supported.

Regulatory Capabilities

Country Code

Communication StandardRegion
Hopping

Enable Channels.

For setting/getting Region, see Region Is Not Configured on page 11.

Retrieving Reader Capabilities

//Get Reader capabilities

Console._WriteLine("'"ModelName: " + reader.Capabilities.ModelName);
Console._WriteLine('SerialNumber: " + reader.Capabilities.SerialNumber);
Console._WriteLine("'"Manufacture Name: " + reader.Capabilities.ManufactureName);
Console_WriteLine('"Manufacturing Date: " + reader.Capabilities.ManufacturingDate);
Console._WriteLine("'Tag Event Reporting

Supported:"+reader.Capabilities. IsTagEventReportingSupported);

Console_WriteLine(""Tag Locationing Supported: ™ +

reader .Capabilities.IsTagLocationingSupported);

Console_WriteLine(""Hopping Enabled: "™ + reader.Capabilities.IsHoppingEnabled);

12

Zebra RFID SDK for Windows Overview

Configuring the Reader

Antenna Specific Configuration

The reader.Configurations class contains the Antennas as object. The individual antenna can be accessed
and configured using the index.

The reader.Configurations.Antennas[antennalD].Configuration Properties is used to set the antenna
configuration to individual antenna.

The antenna configuration comprised of Transmit Power Index, Receive Sensitivity Index and Transmit
Frequency Index.

Set/Get individual antenna configuration settings as follows:

ushort PowerVal = 270;

ushort curAntennalD = 0;

AntennaConfiguration antConfig =
reader.Configurations.Antennas[curAntennalD].Configuration;

antConfig.TransmitPowerIndex = PowerVal;

reader.Configurations.Antennas[curAntennalD].Configuration = antConfig;

Console._WriteLine('Set TransmitPowerlndex = " +
antConfig.TransmitPowerIndex.ToString());

Singulation Control

The property SingulationControl sets/gets the current settings of singulation control from the reader, for the
given Antenna ID.

The following settings can be configured:
* Session - session number to use for inventory operation.
e Tag Population - an estimate of the tag population in view of the RF field of the antenna.

* Tag Transit Time - an estimate of the time a tag typically remains in the RF field.

ushort curAntennalD = O;

// Get Singulation

SingulationControl singulationControl =
reader.Configurations.Antennas[curAntennalD].SingulationControl;

Console._WriteLine("'Session : "+singulationControl.Session.ToString());

Console._WriteLine(""Population : "+singulationControl.TagPopulation.ToString());

Console._WriteLine("TagTransitTime :"+singulationControl.TagTransitTime.ToString());

// Set Singulation

singulationControl .Session = SESSION.SESSION_S1;

singulationControl .TagPopulation = 30;

reader.Configurations.Antennas[curAntennalD].SingulationControl = singulationControl;
Console._WriteLine("SetSingulation : Session = [" + singulationControl_Session + "]");

Console._WriteLine('SetSingulation : TagPopulation:"+
singulationControl.TagPopulation.ToString());

13

Zebra RFID SDK for Windows Overview

Tag Report Configuration

The SDK provides an ability to configure a set of fields to be reported in a response to an operation by a
specific active RFID reader.

Supported fields that might be reported are listed below.
* First seen time

* Last seen time

e PC value

e RSSI value

* Phase value

e Channel index

e Tag seen count.

The reader.Configurations.ReportConfig class can be used to retrieve and sets the tag report parameters
from the reader.

Dynamic Power Management Configuration

The SDK provides a way to configure the reader to operate in dynamic power mode. The dynamic power
state can be switched to be either on or off.

// set Dynamic power state on
reader.Configurations.DynamicPowerConfig.setDPOState(DYNAMIC_POWER_OPTIMIZATION.ENABLE);
// set Dynamic power state off
reader.Configurations.DynamicPowerConfig.setDPOState(DYNAMIC_POWER_OPTIMIZATION.DISABLE);

Regulatory Configuration

The SDK supports managing of regulatory related parameters of a specific active RFID reader.
Regulatory configuration options are listed below.

* Code of selected region

* Hopping

* Set of enabled channels.

A set of enabled channels includes only such channels that are supported in the selected region. If
hopping configuration is not allowed for the selected regions, a set of enabled channels is not specified.

Regulatory parameters could be retrieved and set via RegulatoryConfig property accordingly. The region
information is retrieved using Region property. The following example demonstrates retrieving of current
regulatory settings and configuring the RFID reader to operate in one of supported regions.

// Get Regulatory Config

RegulatoryConfig regConfig = reader.Configurations.RegulatoryConfig;
Console._WriteLine(""Config.RegulatoryConfig.Region : " + regConfig.Region);
Console._WriteLine(""Config.RegulatoryConfig.Hopping : " + regConfig.Hopping);
string[] enabledChannels = regConfig.EnabledChannels;

// Set Regulatory Config

RegulatoryConfig config = new RegulatoryConfig();
config.Region = "USA";
reader.Configurations.RegulatoryConfig = config;

14

Zebra RFID SDK for Windows Overview

Saving Configuration

Various parameters of a specific RFID reader configured via SDK are lost after the next power down. The
SDK provides an ability to save a persistent configuration of RFID reader. The SaveConfig method can be
used to make the current configuration persistent over power down and power up cycles. The following
example demonstrates utilization of mentioned method.

// Saving the configuration
reader.Configurations.SaveConfig();

Reset Configuration to Factory Defaults

The SDK provides a way to reset the RFD8500 reader to the factory default settings. The
ResetFactoryDefaults method can be used to attain this functionality. Once this method is called, all the
reader settings like events, singulation control, etc. will revert to default values and the RFD8500 reboots.
A connected application shall lose connectivity to the reader and must connect back again and is required
to redo the basic steps for initializing the reader. For mobile device applications after reset to defaults, you
will have to manually pair the scanner using BT Explorer. The following example demonstrates utilization
of mentioned method.

// Resetting the configuration
reader .ResetFactoryDefaults();

Managing Events

The application can register for one or more events, to be notified when it occurs. There are several types
of events. Table 2 lists the events supported.

Table 2 Supported Events

Event Description

readerWatcher.ReaderConnected Event notifying connection from the Reader.

readerWatcher .ReaderDisconnected Event notifying disconnection from the Reader. The
application can call connect method periodically to
attempt reconnection or call disconnect method to

cleanup and exit.

readerWatcher _ReaderAppeared Event notified when reader paired.

readerWatcher.ReaderDisappeared Event notified when reader unpaired.

reader. Inventory.TagDataReceived Tag Data received event.

reader. Inventory. InventoryStarted Inventory operation started. In case of periodic
trigger, this event is triggered for each period.

reader . Inventory. InventoryStopped Inventory operation has stopped. In case of
periodic trigger this event is triggered for each
period.

reader. Inventory. InventorySessionSummary Event generated when operation end summary has
been generated. The data associated with the
event contains total rounds, total number of tags
and total time in micro secs.

reader .BatteryStatusNotification Events notifying different levels of battery, state of
the battery, if charging or discharging.

15

Zebra RFID SDK for Windows Overview

Table 2 Supported Events (Continued)

Event Description

reader .PowerStatusNotification Events which notify the different power states of the
reader device. The event data contains cause,
voltage, current and power.

reader.TemperatureStatusNotification When temperature reaches threshold level, this
event is generated. The event data contains source
name (PA/Ambient).

reader . Inventory.BatchMode Event generated when batch tag read operation is
in progress.

Registering for Tag Data Notification

// registering for read tag data notification
reader . Inventory.TagDataReceived += Inventory _TagDataReceived;

private void Inventory_TagDataReceived(object sender, TagDataReceivedEventArgs e)

{
Console_WriteLine("Events_ReadNotify -------- ");
Console.WriteLine("'Tag ID:" + e.EPCId);
Console._WriteLine("'Tag Seen Count:" + e.TagSeenCount);
Console._WriteLine(""'RSSI"™ + e.RSSI);

}

Device Status Related Events

Device status, like battery, power, and temperature, is obtained through events after initiating the
reader.Configurations.GetDeviceStatus method.

Response to the above method comes as battery event, power event and temperature event according to
the set boolean value in the respective parameters. The following is an example of how to get these
events.

reader.BatteryStatusNotification += Reader_BatteryStatusNotification;
reader.TemperatureStatusNotification += Reader_TemperatureStatusNotification;
reader.PowerStatusNotification += Reader_PowerStatusNotification;

bool battery = true;

bool power = true;

bool temperature = true;
reader.Configurations.GetDeviceStatus(battery, power, temperature);

private void Reader_BatteryStatusNotification(object sender,
BatteryStatusNotificationReceivedEventArgs e)

{
}

//Handle battery event notification

(continued on next page)

16

Zebra RFID SDK for Windows Overview

private void Reader_PowerStatusNotification(object sender,
PowerStatusNotificationReceivedEventArgs e)

{
}

//Handle power event notification

private void Reader_TemperatureStatusNotification(object sender,
TemperatureStatusNotificationReceivedEventArgs e)

{
}

//Handle temperature event notification

Basic Operations

Tag Storage Settings

This section covers the basic/simple operations that an application would need to be performed on an
RFID reader which includes inventory and single tag access operations.

Each tag has a set of associated information along with it. During the Inventory operation the reader
reports the EPC-ID of the tag where as during the Read-Access operation the requested Memory Bank
Data is also reported apart from EPC-ID. In either case, there is additional information like PC-bits, RSSI,
last time seen, tag seen count, etc. that is available for each tag. This information is reported to the
application as TagData for each tag reported by the reader. Applications can also choose to
enable/disable reporting certain fields in TAG_DATA. Disabling certain fields can sometimes improve the
performance as the reader and the SDK are not processing that information.

Following are a few use-cases that get tags from the reader.

Reading Tag Data from Event

A simple continuous inventory operation reads all tags in the field of view of all antennas of the connected
RFID reader. The start and stop trigger for the inventory is the default (i.e., start immediately when
reader.Inventory.Perform is called, and stop immediately when reader.Inventory.Stop is called).

// registering for read tag data notification
reader. Inventory.TagDataReceived += Inventory_TagDataReceived;

// perform simple inventory reader
reader. Inventory.Perform();

// Keep getting tags in the TagDataReceived event if registered
Thread.Sleep(5000); // Wait for 5 seconds for tags to read

// stop the inventory
reader . Inventory.Stop();
private void Inventory TagDataReceived(object sender, TagDataReceivedEventArgs e)

{
Console_WriteLine("Events_ReadNotify -------- ");
Console.WriteLine("Tag ID:" + e.EPCId);
Console_WriteLine(""Tag Seen Count:" + e.TagSeenCount);
Console._WriteLine("'RSSI™ + e.RSSI);

}

17

Y

Zebra RFID SDK for Windows Overview

Reading Tag Data from Queue

The GetNextTagDataReceived() method is used to read tag data from internal queue. This is a blocking
method that retrieves oldest ITagData buffered in the internal queue. If no tag data is present, the method
blocks and waits until tag data is received.

If a timeout is specified as a parameter the method blocks and waits for the specified amount of time, for
tag data (ITagData) to appear in the internal queue and returns the corresponding value.

To enable tag data to be received from internal queue, update the App.Config xml <appSettings> section
as follows:

<I--Support tag data queuing for Win Mobile -->
<add key=""ZetiResponseDispatcherAssembly"
value="Symbol .RFID.SDK.Domain.Reader. Infrastructure.dll'/>
<add key=""ZetiTagDataDispatcher™
value="Symbol .RFID.SDK.Domain.Reader. Infrastructure.ZetiTagDataQueuingDispatcher"/>

NOTE: Tag data is not returned in the form of an event when you enable the setting above.

To enable tag data to be received as events use the following App.Config xml <appSettings> section:

<I--Support tag data dispatching via events for Win 7 and above or powerful WM devices
-——>

<add key=""ZetiResponseDispatcherAssembly"
value="Symbol .RFID.SDK.Domain.Reader. Infrastructure.dll'/>

<add key=""ZetiTagDataDispatcher™
value="Symbol .RFID.SDK.Domain.Reader. Infrastructure.ZetiTagDataDispatcher"/>

Simple Access Operations

Tag Access operations can be performed on a specific tag or can be applied on tags that match a specific
Access-Filter. If no Access-Filter is specified the Access Operation is performed on all tags in the field of
view of chosen antennas. This section covers the Simple Tag Access operation on a specific tag which
could be in the field of view of any of the antennas of the connected RFID reader.

Dynamic power optimization should be disabled before any access operations.

// set Dynamic power state off
reader.Configurations.DynamicPowerConfig.setDPOState(DYNAMIC_POWER_OPTIMIZATION.DISABLE);

Read

The application can call method reader.AccessOperations.TagRead.Read() to read data from a specific
memory bank.

Write

The application can call method reader.AccessOperations.TagWrite.Write() to write data to a specific
memory bank. The response is returned as a Tagdata from where number of words can be retrieved.

Lock

The application can call method reader.AccessOperations.TagLock.Lock() to perform a lock operation
on one or more memory banks with specific privileges.

Kill

The application can call method reader.AccessOperations.TagKill _Kill() to kill a tag.

18

Zebra RFID SDK for Windows Overview

Tag Locationing

This feature is supported only on hand-held readers and is useful to locate a specific tag in the field of view
of the reader’s antenna. The default locationing algorithm supported on the reader can perform locationing
only on a single antenna. reader.TagLocate.Perform(string epc) can be used to start locating a tag, and
reader.TagLocate.Stop() to stop the locationing operation. The result of locationing of a tag is reported as
reader.TagLocate.ProximityPercentReceived event and ProximityPercent in
ProximityPercentReceivedEventArgs gives the relative distance of the tag from the reader antenna.

Advance Operations

Using Triggers

Triggers are the conditions that should be satisfied to start or stop an operation (Inventory). This
information can be specified using Triggerinfo class.

Use reader.Configurations.Triggerinfo.StartTrigger and reader.Configurations.Triggerinfo.StopTrigger
methods to set triggers on the reader.

The following are some use-cases of using TRIGGER_INFO.

¢ Periodic Inventory: Start inventory at a specified time for a specified duration repeatedly.

Triggerinfo triggerinfo = reader.Configurations.Triggerinfo;

// start inventory every 3 seconds
triggerinfo.StartTrigger.Type=START_TRIGGER_TYPE.START_TRIGGER_TYPE_PERIODIC;
triggeriInfo.StartTrigger.Periodic.Period=3000

// stop trigger
triggerinfo.StopTrigger.Type=STOP_TRIGGER_TYPE.STOP_TRIGGER_TYPE_DURATION;
triggeriInfo.StopTrigger.Duration=5000; // stop after 5 seconds
reader.Configurations.Triggerinfo = triggerinfo;

* Perform 'n' Rounds of Inventory with a timeout: Start condition could be any; Stop condition is to
perform 'n' rounds of inventory and then stop or stop inventory after the specified timeout.

Triggerinfo triggerinfo = reader.Configurations.Triggerinfo;

// start inventory immediate
triggerinfo.StartTrigger.Type=START_TRIGGER_TYPE.START_TRIGGER_TYPE_IMMEDIATE;
// stop trigger

triggerinfo.StopTrigger.Type=STOP_TRIGGER_TYPE.STOP_TRIGGER_TYPE_N_ATTEMPTS_WITH_TIMEOUT;
triggerinfo.StopTrigger.NumAttempts.N=3; // perform 3 rounds of inventory
triggeriInfo.StopTrigger.NumAttempts.Timeout=3000; // timeout after 3 seconds
reader.Configurations.Triggerinfo = triggerinfo;

¢ Read 'n' tags with a timeout: Start condition could be any; Stop condition is to stop after reading 'n' tags
or stop inventory after the specified timeout.

Triggerinfo triggerinfo = reader.Configurations.Triggerinfo;

// start inventory immediate

triggeriInfo.StartTrigger.Type = START_TRIGGER_TYPE.START_TRIGGER_TYPE_IMMEDIATE;

// stop trigger

triggerinfo.StopTrigger.Type =
STOP_TRIGGER_TYPE.STOP_TRIGGER_TYPE_TAG_OBSERVATION_WITH_TIMEOUT;

triggeriInfo.StopTrigger.TagObservation.N= 5; // number of tag observations

triggerinfo.StopTrigger.TagObservation.Timeout = 10000; // timeout after 10 seconds

reader.Configurations.Triggerinfo = triggerinfo;

19

Zebra RFID SDK for Windows Overview

* Inventory based on hand-held trigger: Start inventory when the reader hand-held trigger button is
pulled, and stop inventory when the hand-held trigger button is released or subject to timeout.

Triggerinfo triggerinfo = reader.Configurations.Triggerinfo;
// start inventory immediate
triggerInfo.StartTrigger.Type = START_TRIGGER_TYPE.START_TRIGGER_TYPE_HANDHELD;
triggerinfo.StartTrigger.Handheld.HandheldEvent =
HANDHELD_TRIGGER_EVENT_TYPE_HANDHELD TRIGGER_PRESSED; // number of tag
observations
triggerinfo.StartTrigger.Handheld.Timeout = 10000; // timeout after 10 seconds
// stop trigger
triggerinfo.StopTrigger.Type =
STOP_TRIGGER_TYPE.STOP_TRIGGER_TYPE_HANDHELD WITH_TIMEOUT;
triggeriInfo.StopTrigger.Handheld.HandheldEvent=
HANDHELD_TRIGGER_EVENT_TYPE.HANDHELD_TRIGGER_RELEASED; // number of tag
observations
triggerinfo.StopTrigger.-Handheld.Timeout = 10000; // timeout after 10 seconds
reader .Configurations.Triggerinfo = triggerinfo;

Using Beeper
Use the reader.Configurations.BeeperVolume property to turn the beeper on/off, and set volume.

Get beeper setting example:

BEEPER_VOLUME beeperVolume = reader.Configurations.BeeperVolume;
string strBeeperVolume = "";
switch (beeperVolume)
{
case BEEPER_VOLUME.HIGH_BEEP:
strBeeperVolume = "HIGH BEEP";
break;
case BEEPER_VOLUME.MEDIUM_BEEP:
strBeeperVolume = "MEDIUM_BEEP";
break;
case BEEPER_VOLUME.LOW_BEEP:
strBeeperVolume = "LOW_BEEP";
break:;
case BEEPER_VOLUME.QUIET_BEEP: // beeper sound off
strBeeperVolume = "QUIET_ BEEP";
break;

}

Console._WriteLine("'GetBeeperVolume = " + strBeeperVolume);

Set beeper example:

//Set beeper volume high
reader.Configurations.BeeperVolume

BEEPER_VOLUME.HIGH_BEEP;

Batch Mode

When the RFD8500 reader is configured to operate in batch mode, it is capable of reading RFID tag data
without being connected to a host device. The reader.Configurations.BatchModeConfig property can be
used to configure Batch Mode as follows:

reader .Configurations.BatchModeConfig = BATCH_MODE.ENABLE

20

Zebra RFID SDK for Windows Overview

Batch Mode can be configured to one of the modes listed in Table 3.

Table 3 Batch Modes

Mode Description

BATCH_MODE.DISABLE Tags are reported in real time as they are inventoried. No data is preserved if
the application disconnects.

BATCH_MODE.ENABLE Tags are stored in an internal database maintained in the reader, and are not
returned to host in real time.

While in batch mode, the reader will
continue to perform inventory even if the reader is disconnected from the
host. Upon re-connection, the ReadSessionBatchModeEventArgs” event will
be raised indicating that the inventory is in progress.

In order to
retrieve the stored tags, inventory must be stopped by calling
reader.Inventory.Stop(), and the reader.Inventory.GetBatchedTags() method
must be called to get the stored tag Data.

BATCH_MODE.AUTO Tags are reported in real time while the application that initiated performing
inventory is still connected.

 If the reader is disconnected, the tag
data is stored in an internal database maintained in the reader Upon
re-connection, the "ReadSessionBatchModeEventArgs” event will be raised
indicating that the inventory is in progress.

 In order to retrieve the
stored tags, inventory must be stopped by calling reader.Inventory.Stop(),
and the reader.Inventory.GetBatchedTags() method must be called to get
the stored tag Data.

To clear stored batched tags in the reader's internal database, call the reader.Inventory.PurgeTags()
method.

Using Pre-Filters

Pre-filters are the same as the Select command of C1G2 specification. Once applied, pre-filters are
applied prior to Inventory and Access operations.

Singulation

Singulation refers to the method of identifying an individual Tag in a multiple-Tag environment.

In order to filter tags that match a specific condition, it is necessary to use the tag-sessions and their states
(setting the tags to different states based on match criteria - reader.PreFilters.ConfiguredFilters) so that
while performing inventory, tags can be instructed to participate (singulation -
reader.Config.PreFilters.ConfiguredFilters[filterindex].IsEnable) or not participate in the inventory based
on their states.

Sessions and Inventoried Flags

Tags provide four sessions (denoted S0, S1, S2, and S3) and maintain an independent inventoried flag for
each session. Each of the four inventoried flags has two values, denoted A and B. These inventoried flag
of each session can be set to A or B based on match criteria using method
reader.ConfiguredFilters][filterindex].Action

Selected Flag

Tags provide a selected flag, SL, which can be asserted or deasserted based on match criteria using
reader.ConfiguredFilters[filterindex].Action

21

Zebra RFID SDK for Windows Overview

State-Aware Singulation
In state-aware singulation the application can specify detailed controls for singulation: Action and Target.

Action indicates whether matching Tags assert or deassert SL (Selected Flag), or set their inventoried flag
to A or to B. Tags conforming to the match criteria specified using the
reader.ConfiguredFilters[filterindex].Action are considered matching and the remaining are non-matching.

Target indicates whether to modify a tag’s SL flag or its inventoried flag, and in the case of inventoried it
further specifies one of four sessions.

Applying Pre-Filters

Follow these steps to use pre-filters.

1. Add pre-filters.

The application can update pre-filters using the reader.ConfiguredFilters list to add and remove
pre-filters.

2. Set appropriate singulation controls.

Now that the pre-filters are set (i.e., tags are classified into matching or non-matching criteria), the
application needs to specify which tags should participate in the inventory using
reader.Configurations.Antennas[curAntennalD].SingulationControl.

3. Perform Inventory or Access operation.

Inventory or Access operation when performed after setting pre-filters, use the tags filtered out of
pre-filters for their operation.

Exceptions

The Zebra RFID Windows SDK throws standard .Net exceptions. All API calls should be under try-catch
block to catch exceptions thrown while performing API calls.

try

{
// Establish connection to the RFID Reader
reader .Connect();

}
catch (Exception e)
{
Debug.Print(e.Message);
}

22

Creating, Building, and

Running Projects

Introduction

This chapter provides step-by-step instructions to import the RFID SDK module and build Windows
applications (with Microsoft .net 4.5/Compact framework) to work with the RFD8500 reader.

E/[NOTE: To build a Microsoft .net 4.5 application for Window 7 use Visual Studio 2015.

For .Net Compact Framework MC55 mobile applications use Visual Studio 2008 (and the Windows Mobile 6
SDK).

Creating a Windows Project

To create a C# Windows project in Visual Studio 2015:
1. Start Visual Studio 2015.
2. Select File > New > Project > Visual C#.

3. Create a new Windows Forms Application project and follow the on-screen steps in Visual Studio.

Figure 1 New Project Window

New Project [B°R ==
b Recent NET Framework 452 = Sortby: Default - @ = Search Installed Templates (Ctrl+E P~
4 Installed] -

[] Blenk App (Universal Windows) Visual C# Type: Visual C#
4 Templates - A project for creating an application with
Visual C# | Windows Forms Application Visual C# a Windows Forms user interface
b Windows ci
Android !‘J WPF Application Visual C#
Cloud cn
Extensibility E Console Application Visual C#
i0s c4
LightSwitch 'l_-_'| Shared Project Visual C#
Office/SharePoint cn
Silverlight E‘ﬁ! Class Library (Portable for i0S, Android and Windows) Visual C#
Test C!
nli +
wer oh ! Class Library Visual €
Workflow nﬁc
Class Library (Portable) Visual C#
b Visual Basic f‘!!
cr
Visual F# @ Silverlight Application Visual C#
b Visual C++
cu
Python é! Silverlight Class Library Visual C#
b JavaScript -
-
b Online Click here to go online and find templates,
Name: WindowsFormsApplicationl
Location: CACSharp =
Solution: Create new solution ol
Solution name: WindowsFormsApplicationl [w] Create directory for solution

[] Create new Git repository

Cancel

4. Add a reference to the Symbol.RFID.SDK and Symbol.RFID.SDK.Domain.Reader assemblies/DLLs
from RFID SDK binaries.

23

Creating, Building, and Running Projects

5. Import the Symbol.RFID.SDK and Symbol.RFID.SDK.Domain.Reader namespace/classes.

Figure 2 Import Window

B windowsformeAgpacaton] - Mrosoft Vil Studio (Aominstratan TE Quick Lot SlE=
File Eait Wiew Progect Build Debug Team Tooks Tem Apalwe Window Hep sgnin [

- H-CL @ 20 - Dewg - Ay < b oStaete| g - 3L .

rianagemant = FFioSok.Remctefeaderfanagenent ServicesFactory Craatel);
ors = resderManagoment .GotRssders (Rosdorsesrch 1e Al Roaders)
tory . Create(allReaders[8]);

© ’ . (Reads . iH
e discansectodiraders £ et TR bions MetConnected) -

it
g
i3
3

Building and Running a Windows Project

To build and run a project:

1. Before building/running a project, ensure the assemblies listed below are in the target application
folder. The target application folder is the location of the compiled application (for example,
\bin\Debug\).

* InTheHand.Net.Personal.dll

¢ RFIDCommandLib.dll

* Symbol.Extensions.Compatibility.dll

* Symbol.RFID.SDK.Connectivity. Windows.dll

¢ Symbol.RFID.SDK.Discovery.Windows.dll

¢ Symbol.RFID.SDK.dII

¢ Symbol.RFID.SDK.Domain.Reader.dll

¢ Symbol.RFID.SDK.Domain.Reader.Infrastructure.dll

¢ Symbol.RFID.SDK.Domain.Reader.Infrastructure.Management.dll
* TaskParallel.dll

2. Add the following settings to the App.Config file (ensure the correct paths are specified for the target
assemblies).
<configuration>
<appSettings>
<add key="RemoteReaderAssembly" value="Symbol .RFID.SDK.Domain.Reader.dll"/>

<add key='"'RemoteReaderService"
value=""Symbol .RFID.SDK.Domain.Reader .ZetiRfidReader"/>

24

Creating, Building, and Running Projects

<add key="RemoteReaderConnectionAssembly"
value=""Symbol .RFID.SDK.Connectivity._Windows.dll"/>

<add key='"'RemoteReaderConnectionService"
value=""Symbol _.RFID.SDK.Connectivity.Windows.SocketDeviceConnection/>

<add key='"‘RemoteReaderDiscoveryServiceAssembly"
value=""Symbol .RFID.SDK.Discovery._Windows.dll"/>

<add key='"RemoteReaderDiscoveryService"
value="Symbol .RFID.SDK.Discovery.Windows.ReaderWatcher"/>

<add key="'RemoteReaderInfrastructureServiceAssembly"
value="Symbol _.RFID.SDK.Domain.Reader. Infrastructure.dll'/>

<add key='"'RemoteReaderInfrastructureService"
value=""Symbol .RFID.SDK.Domain.Reader . Infrastructure.ZetiRfidReaderAdapter'/>

<add key=""RemoteReaderManagementServiceAssembly"
value="Symbol _.RFID.SDK.Domain.Reader. Infrastructure.Management.dll'/>
<add key=""RemoteReaderManagementService"

value=""Symbol _.RFID.SDK.Domain.Reader . Infrastructure.Management.RemoteReaderManagement'/>
</appSettings>
</configuration>

NOTE: Ensure the specified DLLs are present in the target application folder and add the <appSettings> section above
to the App.Config xml configuration file of the project. The settings above are for Desktop Windows RFID reader
connections using Bluetooth sockets.

Creating a Windows Mobile Project

To create a C# Windows mobile project (.Net Compact Framework) in Visual Studio 2008:
1. Start Visual Studio 2008.
2. Select File > New > Project > Visual C#.

3. Create a new Smart Device project and follow the on-screen steps in Visual Studio.

25

Creating, Building, and Running Projects

Figure 3 Smart Device Project Window

New Project
Project types: Templates: NET Framework 35 ~ [EE |
Smart Device + || visual Studio installed templates
Office —
Dataoase
Reporting fsmart Device
Test Project
WCF
Workflow My Templates Il
4 Visual C# | j i
Windows i X
Web Search
ontine Te-
o
Database
Reporting |
Test
WCF
Workflow
Vel £a o ae
A project for Smart Device applications. Choose target platform, Framework version, and template in the next dialog box.
Name: RFIDMobileApp| I
Location: C\Users\TCHF63\Documents\Visual Studio 2008\Projects - I Browse...
Solution Name: RFIDMobileApp | Create directory for solution
==

Figure 4 Assembly Configuration for RFID SDK Demo Project
£ s - s e - = =

Fio Gt Vew Pomt Buid Debu D Toos Tew Amsyer Wisdow e

S rd-~S @ 4 MR <A P Reesse = AnyCRU * | @ Ssontiaes * [F W% KD, WotossMobies0foce > & A]
¥ Anesderss Aboic Legaeres | RBUan UG | inveione Hamecs = »¢ "Scliion Faplore - Sokcn Spmbal RFDISOK Win. v 15
8 || symoccrripsopenaApn o o =Y |

g

T Cupt i e Lo o sty 1 i et Syemi Rt

Building and Running a Windows Mobile Project

To build and run a mobile project:

1. Before building/running a Windows mobile project, ensure the .Net CF specific RFID SDK assemblies
listed below are in the target application folder. The target application folder is the location of the
compiled application (for example, \bin\Debug\Assemblies).

* InTheHand.Net.Personal.dll

e Symbol.RFID.SDK.Connectivity. Windows.dll

e Symbol.RFID.SDK.Discovery.Windows.dll

¢ Symbol.RFID.SDK.Domain.Reader.Infrastructure.Management.dll
¢ Symbol.RFID.SDK.StoneStreetOne.dll

In addition, manually add references to the following DLLs in the target Visual Studio project:

26

Creating, Building, and Running Projects

¢ Symbol.RFID.SDK.dII
¢ Symbol.RFID.SDK.Domain.Reader.dll

For Compact Framework applications built with Visual Studio 2008 (for the MC55) use the serial
connection with StoneStreet One Bluetooth stack. Only StoneStreet One Bluetooth stack is supported for
Mobile Compact Framework applications. Add the following settings to the App.Config file and ensure the
correct paths are specified for the target assemblies.

<configuration>
<appSettings>
<add key="RemoteReaderAssembly" value="Symbol .RFID.SDK.Domain.Reader.dll"'/>
<add key="RemoteReaderService" value="Symbol .RFID.SDK.Domain.Reader.ZetiRfidReader"/>

<add key="RemoteReaderConnectionAssembly"
value=""Assemblies\Symbol .RFID.SDK.Connectivity.Windows.dll"/>

<add key="RemoteReaderConnectionService"
value=""Symbol .RFID.SDK.Connectivity.Windows.SerialPortDeviceConnection"/>

<add key="RemoteReaderDiscoveryServiceAssembly"
value=""Assemblies\Symbol .RFID.SDK.Discovery.Windows.dl1"/>

<add key="RemoteReaderDiscoveryService"
value=""Symbol .RFID.SDK.Discovery.Windows.ReaderWatcherSS"/>

<add key="RemoteReaderInfrastructureServiceAssembly"
value=""Symbol .RFID.SDK.Domain.Reader. Infrastructure.dll1'/>

<add key="RemoteReaderInfrastructureService"
value=""Symbol .RFID.SDK._Domain.Reader . Infrastructure.ZetiRfidReaderAdapter"/>

<add key=""RemoteReaderManagementServiceAssembly"
value=""Assemblies\Symbol .RFID.SDK.Domain.Reader . Infrastructure.Management.dll"/>

<add key="RemoteReaderManagementService"
value=""Symbol .RFID.SDK.Domain.Reader . Infrastructure _Management.RemoteReaderManagementSS"/>

<add key="ZetiResponseDispatcherAssembly"
value="Symbol .RFID.SDK.Domain.Reader. Infrastructure.dll'/>

<add key="ZetiTagDataDispatcher"
value=""Symbol .RFID.SDK.Domain.Reader. Infrastructure.ZetiTagDataQueuingDispatcher'/>

</appSettings>
</configuration>

Pairing with Bluetooth

Pairing with a Personal Computer
1. If the BT LED is not blinking, press the BT button for one second to make the RFD8500 discoverable
(the BT LED starts blinking when in discoverable mode).
2. From the Start menu, select Device and Printers.
3. Select Add a device.

4. Select the device and click Next. When the BT LED starts blinking rapidly press the trigger within 25
seconds to acknowledge pairing.

5. Select Close to complete the pairing process.

27

Creating, Building, and Running Projects

Pairing with a MC55 mobile device

Go to BTExplorer and select Menu > New Connection.
Select Next.
Select Menu > Discover Devices.

If the BT LED is not blinking, press the BT button for one second to make the RFD8500 discoverable
(the BT LED starts blinking when in discoverable mode).

A o N =

When the device appears in the list, tap the device name and select Next.
Select RFID Serial Port and then select Next.

Select Next.

Select Connect.

Select OK.

o P ® N @

0. Select Yes to confirm connection. When the BT LED starts to blink rapidly, press the RFD8500 trigger
within 25 seconds to accept the pairing request.

11. When your device is in the connected state, select it and disconnect. This retains only the paired state.

Figure 5 Pairing Bluetooth Device on Windows

lo) L acdadevice () I Add @ device
Select a device to add to this computer This device has been successfully added to this computer
Windows will continue 1o loak for new devices and display them here. Windows is now checking for drivers and will install them if

necessary. You may need to wait for this to finish before your o (N
device is ready to use
2 RFDB50015356523021675

Bluetooth Ta verify if this device finished installing properly, look for it in
S’ Other Devices and Printers. RFDB5001535652302
1675

| |
Next | | Cancel [Gwe]

28

Demo Applications

Windows 7 RFID SDK Demo Application

The Desktop Windows RFID SDK Sample Application shows how to call the RFID Windows API to
communicate/configure the RFD8500 reader and receive tag data.

Figure 1 Windows 7 RFID SDK Demo App

“. RFID SDK DEMONSTRATION APP
Settings Help

Active RFID Readers

RFD850015356523021456] PAIR NEW

Inventory Tag Locate Access Control

CONNECT

Tag D Peak RSSI Tag Seen Count

|
III I]
x

Log

29

Demo Applications

Windows Mobile RFID SDK Demo Application

The Windows Mobile Compact Framework RFID SDK Sample Application shows how to call the RFID

Windows API to communicate/configure the RFD8500 reader and receive tag data from Windows Mobile
Device.

Figure 2 Windows Mobile RFID SDK Demo App

RFID SDK DEMO APP] &7 o< @ 5:28

[RFD850015357523020114 (COM5[*|

Disconnect Inventory
Settings Tag Locate
About Access Control

30

Ql“o ZEBRA www.zebra.com

	Terms of Use
	Proprietary Statement
	Product Improvements
	Liability Disclaimer
	Limitation of Liability

	Revision History
	About This Guide
	Introduction
	Supported RFID Readers
	Chapter Descriptions
	Notational Conventions
	Service Information
	Provide Documentation Feedback

	Zebra RFID SDK for Windows Overview
	Introduction
	Connecting to an RFID Reader
	Special Connection Handling Cases
	Region Is Not Configured
	Disconnect

	Reader Capabilities
	General Capabilities
	Gen2 Capabilities
	Regulatory Capabilities
	Retrieving Reader Capabilities

	Configuring the Reader
	Antenna Specific Configuration
	Singulation Control
	Tag Report Configuration
	Dynamic Power Management Configuration
	Regulatory Configuration
	Saving Configuration
	Reset Configuration to Factory Defaults

	Managing Events
	Registering for Tag Data Notification
	Device Status Related Events

	Basic Operations
	Tag Storage Settings
	Simple Access Operations
	Tag Locationing

	Advance Operations
	Using Triggers
	Using Beeper
	Batch Mode
	Using Pre-Filters

	Exceptions

	Creating, Building, and Running Projects
	Introduction
	Creating a Windows Project
	Building and Running a Windows Project
	Creating a Windows Mobile Project
	Building and Running a Windows Mobile Project
	Pairing with Bluetooth
	Pairing with a Personal Computer
	Pairing with a MC55 mobile device

	Demo Applications
	Windows 7 RFID SDK Demo Application
	Windows Mobile RFID SDK Demo Application

